

or visit www.audiologyonline.com

/e Expert eSeminar

AudiologyOnline

Wednesday, July 11th Clinical Verification of Custom-Fitted Musicians Earplugs Presented by Brian Fligor, ScD

Wednesday, July 18th Protecting Musicians with Hearing Loss Against Employment Discrimination Presented by Paul Morenberg, Esq., Attorney-at-Law

Wednesday, July 25th

Longitudinal Study of iPod Use with Field Dosimetry: Getting Closer to the Truth about Risky Listening Presented by Cory Portnuff, Au.D., Ph.D.

Recorded Course Available July 2nd It's a Noisy World: Holistic Perspective of Noise Burden in Urban Populations Presented by Rick Neitzel, PhD, CIH

4

Verification of Flat Attenuation Characteristics of Musicians Earplugs™

Brian Fligor, ScD

Instructor, Otology and Laryngology, Harvard Medical School Director of Diagnostic Audiology, Children's Hospital Boston

brian.fligor@childrens.harvard.edu

AudiologyOnline 2012 Noise Induced Seminar Series Seminar Series

- Paul Morenberg, Esq.
- "Protecting Musicians With Hearing Loss Against Employment Discrimination" July 18: 12-1pm EST
- Cory Portnuff, Au.D., Ph.D.
- "Longitudinal Study of iPod Use With Field Dosimetry: Getting Closer to the Truth About Risky Listening" July 25: 12-1pm EST
- Rick Neitzel, Ph.D., CIH
- "It's a Noisy World: Holistic Perspective of Noise Burden in Urban Populations" Recorded, On-demand

Acknowledgements

- Mead Killion, PhD, ScD(hon), Gail Gudmundsen, AuD, Patty Niquette, AuD, Etymotic Research, Inc.
- · Michael Santucci, AuD, Sensaphonics
- Elliot Berger, 3M
- Benj Kanters, Columbia College
- · Kris Chesky, PhD, University of North Texas
- Cory Portnuff, AuD, PhD, University of Colorado, ENT of Denver
- Frank Wartinger, AuD, All Children's Health System/Johns Hopkins Medicine

Presented at 47th AES Conference, Music Induced Hearing Disorders: New Technologies for Measurement and Prevention (June 20-22, 2012 Chicago, IL)

Sound Exposures: Bamboozle Road Show, June 2010

Noise-Induced Hearing Loss Gradually Developing Noise-Induced Permanent Threshold Shift (NIPTS)

- 78 dBA 130 something (?) dBA
- Outer hair cells
- Metabolic overload after duration of exposure
- Gradual loss in sensory hearing
- NITTS: recovery after a rest period

Acoustic Trauma (AT)

- 140 dB Peak SPL (132 dB SPL Price, 1981)
- · Usually from impulse: brief, fast rise time
- Can result from marked "overdose"
- Mechanical Damage after single exposure
- Immediate loss of sensory hearing

Injury from Chronic Noise Exposure:

- F(time & intensity)
- F(frequency) A-weighting "network"

NIPTS (also NITTS):

- Hearing threshold decrease poorest in the 3000 – 6000 Hz range (4000 Hz Notch)
 Other injuries in MIHD:
 - tinnitus
 - abnormal pitch perception (diplacusis)
 - loudness intolerance (hyperacusis)

 Risk for a "Material Hearing Impairment" Max Noise Dose 85 dBA trade 3 vs. 90 dBA trade 5?

 OSHA (1981):
 Minimum Standard for Safety

 Organization ISO
 TWA Noise Exposure 90 dBA
 Estimated % at Risk 21%

 85 dBA
 10%

USHA (1901).	HA (1901). Willing the Standard for Salety	
Organization	TWA Noise Exposure	Estimated % at Risk
ISO	90 dBA	21%
	85 dBA	10%
	80 dBA	0%
EPA	90 dBA	22%
	85 dBA	12%
	80 dBA	5%
NIOSH	90 dBA	29%
	85 dBA	15%
	80 dBA	3%
Prince, et al 199	97 85 dBA	8%

Damage Risk	Criteria	
 OSHA 90 dBA, 8-hr TWA 5 dB Exchange rate 	 NIOSH 85 dBA TWA 3 dB ER 	• EPA / WHO • 80 dBA TWA • 3 dB ER
90 dBA 8 hrs	85 dBA 8 hrs	80 dBA 8 hrs
95 dBA 4 hrs	88 dBA 4 hrs	83 dBA 4 hrs
100 dBA 2 hrs	91 dBA 2 hrs	86 dBA 2 hrs
105 dBA 1 hr	94 dBA 1 hr	89 dBA 1 hr
LIBERAL		✤ CONSERVATIVE

NIOSH	
• 85 dBA TWA	
• 3 dB ER	
5 dBA 8 hrs = 100% No	bise Dose
8 dBA 4 hrs = 100%	88 dBA, 8 hrs = 200%
1 dBA 2 hrs = 100%	91 dBA, 8 hrs = 400%

Material Hearing Impairment?

NIOSH 1998 Definition:

 $> 25~\mathrm{dB}$ HL Avg. 1k, 2k, 3k, and 4kHz (What's that like?)

Elements of a Hearing Loss Prevention Program (HLPP)

Application to music exposure

- Noise Survey (assessment)
- Engineering Controls
- Audiometric Monitoring
- Education and Motivation
- Hearing Protection Devices (HPD)

HPD: "Flat Frequency Attenuators"

HPD: "Flat Frequency Attenuators"

"They told me these were flat, but I don't think they are."

"Real Ear" Probe Microphone sound level measures

Principle Complaint Against HPD

"Muffling"/ "Distortion"

- Change of timbre of music (change of harmonics relative to the fundamental frequency)

- Loss of natural ear canal resonance

HPD: "Flat Frequency Attenuators"

"I can tell this is how they were supposed to sound!"

